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The effect of wavefront curvature on the coherence properties 
of laser light scattered by target centres in uniform motion 

E Jakeman 
Royal Radar Establishment, Malvern, Worcestershire WR14 3PS. UK 

Received 4 December 1974 

Abstract. Moving speckle phenomena produced in the presence of wavefront curvature 
when laser light is scattered by an assembly of uniformly moving target centres are investi- 
gated. The first- and second-order space-time correlation functions of the scattered radiation 
are calculated and it is shown that the conditions for cross-spectral purity are not satisfied. 
It is pointed out that the effects offer a means of measurement of the velocity of the scatterers. 

Perhaps the most familiar phenomenon associated with the scattering of laser light 
is the changing intensity or speckle pattern of bright and dark regions generated in the 
far field when such light is scattered by a moving rough surface. It is well known (for 
example, Rigden and Gordon 1962, Oliver 1963) that when a planar surface is illu- 
minated normally by plane waves then the speckles merely 'evolve' or change their 
form as the surface is moved parallel to its plane, but that when the surface or the 
incident wavefront is curved then a translational motion of each speckle is observed 
before it loses its identity. This phenomenon has received a good deal of attention 
recently in connection with the assessment of the refraction performance of the eye 
(Ingelstam and Ragnarsson 1972 and references therein) and a number of elementary 
calculations have been performed to obtain an estimate of the speckle motion in terms 
of wavefront curvature and surface velocity (for example, Sporton 1969). 

A similar effect, though invisible to the naked eye, will be produced by the inter- 
ference of returns from different target centres when coherent light is scattered from 
uniformly moving seed particles in fluid flow, and could provide the basis for a laser 
anemometry system. In this letter, therefore, a quantitative mathematical description 
of the effects described above will be given in terms of the spatial and temporal coherence 
properties of the scattered light for the simple back-scattering geometry shown in 
figure 1. The primary objective will be to calculate the first- and second-order coherence 
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functions 

g [ l ) ( r , r ’ ;  r )  = ( & + ( r ,  r)&-(r’, t + r ) ) / J ( ( l ( r ,  t ) ) (Z(r’ ,  t + ~ ) ) )  

g‘2)(r ,  r‘ ; T )  = (I@, t)Z(r’, t + ~ ) ) / ( l ( r ,  t ) ) (  I(r’, t + T ) )  

1(r, t )  = 8 + ( r ,  t )& - ( r ,  t )  

(1) 

(2) 

where the intensity is given by 

(3) 

in terms of & ‘ ( r , t ) ,  the positive frequency part of the field at a point r and time t .  
Stationarity will be assumed so that the angle brackets denote time or ensemble averages. 

Provided that the distance, D, from the illuminated volume to the detection plane 
is much greater than the dimensions of the scattering volume, near the z axis &‘(r, t )  
may be expressed as a sum over the totality, N ,  of scatterers in the form 

N 

&+(r ,  t )  = ejaj(r, t )8 , ’ (Rj ,  t )  exp[ ik (~~+Ir , -R ,~ l~ /20 ) ]  (4) 
j =  1 

where a cylindrical polar coordinate system R j  = [R , , , z j ]  etc has been adopted. In 
equation (4) €,‘(Rj, t) is the incident field (wavelength A = 2 x / k )  at the j th scatterer 
situated at RJt) ,  aj(r, t )  is the corresponding scattering factor and e j  takes the value one 
or zero according to whether Rj(t) lies within or outside the scattering volume R (Bourke 
et ai 1970). Note that (4) is valid in the Fresnel region with respect to R since a curvature 
term has been retained in the exponent on the right-hand side (Born and Wolf 1965). 
Assuming that e j ,  Rj and aj are statistically independent and that the scattering centres 
introduce path differences in excess of a wavelength so that the terms of (4) are statistically 
independent, the mean intensity may be written from (3) and (4) as follows : 

Here, N ,  is the mean number of scatterers in the volume C2, and the R-average is defined 
by 

where p(R) is the local number density and 

(7) 

A more explicit form may also be obtained for the coherence functions (1) and (2) using 
the relation 

Rj(t  + 7) = R J t )  + VT (8) 
valid for scattering centres moving with uniform velocity v. For stationary processes 
and N >> 1 the following expressions are obtained : 

g(’ ) ( r ,  r ‘ ;  T )  = exp ik[rv,. ( U +  v)-2DU. Y-viIs-~v:r2/D] 

( b , f ( R ,  t )b , (R+v~, t+~)exp[ ikR, .  (2Y-vLr/D)]), 

( e ( t ) e ( t + ~ ) )  ( r ( r ,  t)a*(r’, t + T ) )  

X 
(~O(RDC2 

X 
(6) ( ( l 4 r ) l  2) (14r ’ ) l  2>)1’z  

(9) 



Letter to the Editor L25 

Y ,  is the component of v parallel to the z axis and v, the corresponding transverse 
component. 

For large N, ( 10) reduces to the usual factorization theorem associated with Gaussian 
light (Glauber 1963). On the other hand, when N ,  is small the non-Gaussian or ‘single- 
particle’ contribution may be dominant. This is often the situation in laser anemometry 
experiments and the final term in (10) has been discussed at length in the literature 
(see for instance Abbiss et al 1974). The main concern of the present work, however, 
is the effect of wavefront curvature which enters (IO) principally through the R-average 
appearing on the right-hand side of (9). Attention will therefore be concentrated, for 
the remainder of the letter, on the Gaussian contribution to (10) and for simplicity 
the factors in 0 and r present in equation (9) will be set equal to unity. This will be the 
situation if the number and cross section of scattering centres do not fluctuate during 
delay times of interest. 

In order to proceed further, a model for the scattering system and incident field 
must be adopted. Figure 1 shows a back-scattering configuration in which a laser 
beam propagating along the z axis is incident on a co-axial cylindrical scattering volume 
of radius p. The laser beam width Wand radius of curvature B are assumed to be con- 
stant within R so that d,’(R, t )  can be represented by the function 

(12) 

In many situations of interest the scattering centres are uniformly distributed over the 
illuminated region. I t  is not difficult to evaluate (9) using (12) and the definition (6) 
in this case if p >> W. The result obtained is 

g‘”(r,r’, T )  = exp[i(2kDCr. V+co0r-2kv, ,~+kv, .  UT)] 

where 

d,’(R, t )  = E ,  exp - i ( o o t - k z - k R ~ / 2 0 ) e x p ( - R ~ / W Z ) .  

x exp[ - + ( ~ : T ~ I W ’  + k 2  W21 V -  K V ~ T I ~ ) ]  

ti = ( D -  ’ + B -  ‘)/2. 

(13) 

(14) 
The first-order correlation function of light back-scattered from a normally illu- 

minated rough surface is also given by (13) which reduces to the expression obtained 
by Estes et a1 (1971) for this situation when D >> B and r r’. Interpretation of the result 
in terms of moving speckle effects is more easily accomplished by writing the Gaussian 
part of the second-order, or intensity correlation function (10) in the form (figure 2) 

(15) g”’(r, r’ ; T )  = 1 + eXp[ - ( T -  Td)2/Tf]  eXp[(Td/T,)’ - k’ 1/’ w 2 ]  

which for fixed V is a Gaussian function of T of width 

T ,  = w/V,(l +k2ti2W4)’’’ 

centred at the delay time 
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Figure 2. Typical second-order coherence function (Gaussian limit) in the presence of 
wavefront curvature. The envelope of the maximum as a function of detector separation 
( V )  is shown by the broken curve. 

At  T = 0 the last term of (15) reduces to exp( - k 2 V 2 W 2 )  corresponding to a speckle 
size of the order of 2Dlk W. When V = 0 on the other hand it becomes exp( - r2/?f) 
indicating an intensity fluctuation time 5 , .  I n  the absence of curvature (for example 
when the scattering volume is situated at the waist of the laser beam and detection is 
carried out in the Fraunhofer region) T~ is determined by the amplitude fluctuations 
which arise as scattering centres move through the Gaussian intensity profile of the 
illuminating beam. This gives a transit time effect characterized by T~ - W / L ) ~  ( K  = 0 
in equation (16)) during which the speckles simply ‘evolve’. When curvature effects 
are important, however. bodily motion of the intensity pattern produces additional 
fluctuations on a time scale determined by the motion and size of the speckles. A high 
degree of correlation then exists at a delay time T,, equal to the time taken for an element 
of the pattern to traverse the distance separating the detection points Y,Y‘ .  However, 
the effect will be degraded if sd exceeds W/v,  because of the intrinsic changes or evolution 
of the speckle mentioned above. If the scattering volume lies sufficiently far from the 
laser beam focus or close to the detection plane kti W 2  >> 1 and curvature effects dominate. 
In this case, assuming for simplicity that V is parallel to v ,  and writing /VI = d/2D 
where d is the linear separation of the detection points, (17) reduces to 

T d  = d/VL(1 +Dig)  (18) 

corresponding to a speckle velocity vL(l +D/a). This result can, in fact, be deduced 
directiy from simple geometrical considerations, and the limiting form obtained when 
D >> a has appeared in previous publications (for example Sporton 1969). Note 
however, that according to (18) speckle motion should be observed in the Fresnel region 
even with plane-wave illumination ( D  << a). Since the speckle size is 2D/kW,  the 
expected fluctuation time associated with bodily motion of the intensity pattern is 
2D/kWv,(l + D / o )  in agreement with equation (16). Moreover, the total distance 
travelled by a speckle during its lifetime W/vL is, from ( l Q  W(l  +D/a) and should be 
an indication of the value ofd at which degradation of the correlation becomes significant. 
The last factor appearing in equation (1 5) reduces to exp[ - d2/W2(  1 + D/a)’] when 
kKW2 >> 1 and sc confirms that this is indeed the case. 
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Having established that equations (1 5H17)  are consistent with the observed moving 
speckle phenomenon. it is interesting to consider briefly some of the less familiar 
implications of the results (13) and (15). First it should be noted that, since the space 
and time variables in ( 1  3) are not separable, the conditions for cross-spectral purity 
(Mandel and Wolf 1965) are not satisfied. In this somewhat unusual situation spatial 
integration by a single detector of finite area will change the temporal characteristics 
of the detected signal. Conversely, if the scattered intensity is sampled with a finite 
integration time then the spatial coherence properties will be changed. It is not difficult 
to show that in addition to the expected reduction in noise, spatial integration will 
lead to a slowing down of the observed intensity fluctuations, whilst temporal integration 
will lead to an increase in the coherence length or effective speckle size of the intensity 
pattern in the direction of its motion. 

Perhaps more important from a practical point of view is the detailed shape of the 
correlation function illustrated in figure 2. This suggests that by cross-correlating the 
output of two or more detectors the transverse velocity component vI could be deter- 
mined through a measurement of sd. The potential of such a technique can be more 
easily assessed by substituting the well known formulae for the width and curvature 
of a propagating laser beam (Kogelnik 1965) into (16) and (17). This gives 

5, = Wo/i~l[(l +f/D)’  + ( E  Wi/i.D)2]”2 

‘d = ____ 

where f is the distance from the scattering region to the laser beam waist of size WO. 
A strong indication of the likely performance of a velocimeter based on measurement 
of T~ will be the resolution T , , ’ T ~  and the peak-to-background ratio g”’(u, u’ ; T ~ ) -  1. 
A particularly useful situation arises if the laser beam focus lies in the detection plane, 
f = D. Provided that E Wi,‘;wD >> 1. T, and 7 d  then become independent of distance 
from the scattering volume and 

when vl is parallel to V and d is the linear separation of the detection points as before. 
Thus, for example, if d - 1 cm, WO - lo-’ cm and D - 10’ cm ( W - 2 mm) a resolution 
of 1 : 100 can be expected with a reduction of the correlation function peak height of 
less than 0.01 ! The possibility of achieving such a high resolution suggests that a laser 
anemometry technique based on the moving speckle phenomenon could prove useful 
in situations where a spread of velocities is present. This would give rise to an effect 
akin to spectral broadening. 

Finally it is perhaps worth pointing out that multiple detector experiments can be 
avoided by mixing radiation using beam-splitter arrangements from different ‘detection’ 
points on the photocathode of a single detector, or by using a double beam or ‘fringes’ 
technique (Abbiss er a1 1974). Both of these methods lead to contributions to the 
second-order coherence function of the detected signal proportional to the first-order 
correlation function (13). 

I would like to express my thanks to Drs C J Oliver. P N Puseq and J M Vaughan whose 
experiments (unpublished) stimulated this work and to Dr E R Pike for helpful discus- 
sions during the preparation of the manuscript. 
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